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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1208

OPTIMAL FILTER!]_G AND LINEAR PREDICTION APPLIED

TO A MIDCOURSE NAVIGATION SYST}H

FOR T}{E CIRCUMLUNAR MISSION

By John D. McLean, Stanley F. Schmidt_
and Leonard A. McGee

SUMMARY

A midcourse navigation system for the circumlunar mission has been

designed and simulated on a digital computer. The spacecraft's actual

position and velocity are estimated by means of the optimal filter de-

scribed in NASA TND-1205. 0n-board optical measl_ements of the

subtended earth and moon angles and the angular positions of the earth

and moon centers relative to an on-board reference system are assumed

as the basic measurements. Linear prediction is then utilized to

compute the corrective velocity impulse necessary to reduce the estimated

position deviation at the end point to zero for a fixed time of arrival.

The mission is divided into two phases_ outbound and return. The

objective of the outbou!id phase is to arrive at a prescribed perilune

point at a fixed time. Terminal conditions at this time are taken then

as initial conditions for the return flight to a prescribed perigee

point in the center of the earth's re-entry corridor.

The results of a digital computer simulation of the navigation

system are presented. The simulation of the trajectory is three-

dimensional and includes the gravitational effects of the earth (through

the second harmonic term) the moon, and the sun, and random errors in

injection conditions, optical measurements, and application of correc-

tive velocity impulses.

The effects of variations in the root-mean-square optical measure-

ment and injection errors on the deviation in end position and cumulative

fuel consumption for velocity corrections during the mission are given.

In addition, some results are presented which giw_ a quantitative idea

of the inaccuracies in linear prediction resulting from neglecting

nonlinearities.



2

INTRODUCTION

Reference i described how someadvanced concepts of statistical
linear filter theory proposed by R. E. F_iman (ref. 2) could be used
to obtain the filter which would give the best estimate of the trajec-
tory (position and velocity vectors) of a space vehicle. Data were
given also on the performance of this optimal filter for accuracies
judged achievable by on-board optical instruments.

The safety of a mannedcircumlunar mission is increased if an
on-board midcourse navigation system does not have to rely on tracking
information obtained on earth; it is apparent that the use of an optimal
filter in such a system should be explored. It is the purpose of this
report_ therefore_ to present details of a possible on-board navigation
system that uses the optimal filter and to evaluate the performance of
the system. The guidance system chosen is based on the assumption that
the actual trajectory of the space vehicle can be accurately described
in terms of linear perturbations about a precalculated standard or ref-
erence trajectory. This technique has been used successfully in manyprob-
lems involving the dynamics of aircraft and_ because of its simp!icity_
could prove useful in space navigation problems.
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NOTATION

A

C

E

F

I

K

P

prediction matrix (relating deviations from the reference

trajectory at the end point to those at earlier times)

transformation matrix for converting errors in angles and

magnitude of velocity correction into Cartesian coordinates

expected value

matrix of coefficients for linear differential perturbation

equations

unit matrix

weighting matrix

covariance matrix of estimation errors
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P

R

Rm

R s

r

r

v

X, Y, Z

Xm, Ym, Zm

Xs, Ys, Zs

x

xi

x e

X

x

magnitude of error in predicting position deviations at

the end poirJts

covariance matrix of deviations between actual and reference

trajectories

range of vehicle from earth

range of moon from earth

range of sun from earth

magnitude of _osition deviation between actual and reference

trajectories

magnitude of i_osition deviation between actual and esti-

mated trajectories

time

magnitude of _elocity correction

magnitude of velocity deviation between actual and reference

trajectories

magnitude of velocity deviation bet_en actual and esti-

mated trajectories

Cartesian coordinates of vehicle's position

Cartesian coordinates of moon's position

Cartesian coordinates of sun's position

state vector (6 X i matrix of vehicle's position and

velocity deviations from reference)

estimated value of x

error in est_:ating x

component of x

value of x immediately after a velocity correction

3 X I matrix of position components of x

3 X I matrix of velocity components of x
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7

5

d

e

T

(')

(-)

elevation angle of earth or moon

azimuth angle of earth or moon

one-half the subtended angle of earth or moon

small deviation

standard deviation of angular measurement errors

elevation angle of corrective velocity vector

azimuth angle of corrective velocity vector

transition matrix

Superscripts

transpose of a matrix

derivative with respect to time

3 × i matrix
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Subscripts

E

G

Q

e

i,k

m

rms

s

end point

velocity to be gained

error in velocity correction

earth

integers

moon

root-mean-square value

sun

-v



THE NAVIGATION SYSTEM

General Description

The ground rules postulated for this study were as follows:

i. Manned reconnaissance of the moon is the principal objective

(in the present case by means of a single passage around the moon).

Thus, accuracy in achieving a prescribed perilune and, more importantly,

a prescribed perigee for a safe return to earth is required with a mini-

mum expenditure of fuel for application of corrective velocities.

2. To provide increased safety for the crew of the vehicle, the

midcourse guidance system shall use on-board instrumentation and compu-

tations to provide navigation information, but shall also have the

capability of accepting guidance information from other sources (for

example, ground tracking data).

The design of a midcourse navigation system fulfilling these ground

rules is a control problem like many others, the aspects of which may

be described as follows. Sketch (a) illustrates the first half of the

midcourse lunar flight. Suppose that errors at injection cause the

vehicle to depart from the reference trajectory so that desired end-point

conditions (e.g., at perilune, E) will not be achieved. Suppose further

that at point C a velocity increment, _V, is to be added to correct for

these errors. First, it is necessary to determine by means of data

;.__/EPERILUNE

REFERENCE TRAJECTORY ,/_?//_ O MOON

S,"
t /

_I_ ../J'_ACTUAL TRAJECTORY

INJECTION

Sketch (a)



obtained from imperfect sensors (optical instruments are assumedhere)
as good an estimate as possible of the position and velocity (i.e., the
state) of the vehicle at point C. This might be called trajectory
determination. Then_ on the basis of the best estimate of the trajec-
tory, end point conditions must be predicted (e.g., what will be the
estimated perilune_ point E, if no corrective action is taken). Next,
a guidance law must be used which makespossible calculation of desired
corrective action to change the estimated end point conditions to cor-
respond to those desired. Finally 3 the indicated control action must
be implemented by applying thrust.

In proper perspective_ this can be seen to represent in a general
way a closed-loop control system as shownin block diagram form in
sketch (b). The navigation and control aspects listed above comprise
the forward loop of the system_ and the applied control action (thrust)
is fed back through the kinematics to influence the state which is the
input to the forward loop of the system. In the present study we will
assumethat the control action will be intermittent and impulsive in
nature (i.e., instantaneous velocity corrections). This assumption
makes it possible to design the forward part of the loop independently
of closed-loop consideration_ nevertheless keeping in mind that the lat-
ter must eventually be considered. In reference I the design of the
forward loop through the optimal filter was discussed. The remainder
of the system and its closed-loop operation will be treated in this
paper.
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Theoretical Considerations

The optimal filter.- The theory of the optimal filter is given in

detail in references i and 2 and will be discussed here only to the

limited extent necessary to understand the results. The optimal tra-

jectory determination scheme can be represented in the form illustrated

in sketch (c). Observation inputs are assumed to consist of sets of

angles measured at times t k by sensors subject to random instrumenta-

tion errors. These errors are assumed to be statistically uncorrelated

from one observation to the next.

SPACE EQUAT IONS ESTI M ATED
ANGLE

OBSERVATIONS _ OF MOTION STATE

WEIGHTING
MATRIX

I

/ I
ESTIMATED I

ANGLES I
I
I

COM PU T E

K

GEOMETRY 1

EQUATIONS

COMPUTEP j

I STATISTI CSOF
_STIMATION

ERRORS

Sketch (c)

The operation of the system is described as follows: After injec-

tion but before any observations have been made, the best estimate is

based solely upon the best knowledge of injection conditions. Thus, the

estimate of injection conditions is inserted as an initial condition on

the equations of motion_ -which are integrated to keep the estimate of

the state up to date. The gain K is zero except at times observations

are made. When an observation is made at time tk, the set of observed

angles is compared with the estimated angles computed from the current

estimate of the state variables. The difference is weighted by the

matrix K(tk) to produce an incremental change in the estimated state

at time t k. The new estimated state variables then serve as new con-

ditions on the equations of motion which are then integrated from time

t k until the time of the next observation, tk+1, to maintain a con-
tinuous estimate of the state. As each observation is made, the process

is repeated.
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The weighting matrix K(tk) is seen to be the heart of the esti-

mation procedure, and the objective is to develop the necessary equations

from the theory whereby K(tk) can be computed. These equations are

given in references I and 2. For solution they require a knowledge of

the equations of motion, the relations between the observables and the

state variables_ and the statistics of injection errors and instrumenta-

tion errorB. Involved as an intermediate step in the calculation of

K(tk) is the computation of the covariance matrix of estimation errors,

P(t_, which is a description of the statistics of the errors in the

estimate and is therefore quite useful as a measure of the performance

of the system. If the nature and the timing of observations are known

a priori, then K(tk) and P(t) can be computed before the flight and

stored for use when needed. However, to allow for greater versatility

these computations are envisioned as being performed in the spacecraft

computer at the specific times they are needed.

The trajectory determination system, of course, operates as an

integral part of the complete vehicle guidance and control system and

must take into account the intermittent application of impulsive velocity

corrections. When such corrective action is taken, the measured value

of this action is introduced directly into the system as an instantane-

ous change in the estimate of the state, and the covariance matrix of

the error in the measured value of the corrective action adds directly

to P. Thereafter the system continues with its observation routine

just as before with no loss of information due to the control action.

The guidance equation.- Linear prediction is used to calculate the

velocity correction that must be applied for the vehicle to arrive at

the desired end point. This method of prediction is based on the as-

sumption that the actual trajectory can be accurately described in

terms of linear perturbations around the reference trajectory. Given

a set of perturbations in position and velocity at some time, to, the

perturbations at a later time, t, will be a linear combination of the

earlier ones. It is convenient to write this relationship in matrix
form as follows:

x(t) = ¢(t;to)X(to)

where the x's are 6 × i column matrices of perturbations in position and

velocity and ¢ is a 6 × 6 matrix, defined as the transition matrix

between times to and t. The transition matrix between some earlier

time, t, and the time of the reference end point is defined in this

report as a prediction matrix and is designated by A. In equation form

(1)

A

5
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where xE is a 6 × i matrix of position and velocity deviations at the

end point. Provision has been made in the computer program to calculate
both A and the transition matrices discussed in reference i. The

methods of computation are described in appendix B. Equation (i) may

be written in partitioned form as

3

(2)

where the

respectively, and the A i are 3 × 3 matrices. It is desired to have the

actual and reference trajectories coincide in position and velocity at

the end point. In general, only three componenbs of the vector xE can

be reduced to zero with a single velocity correction• For this reason

the guidance equation is formulated so that only position errors will

be made zero at the end point.

Equation (2) can be expanded to compute the end-point position

error

x_ = A:: + A2x (3)

and _- are 3 x i matrices of position and velocity deviations,

If at time t a velocity correction_ XGs is addeds the dnange in posi-

tion at the end point will be

xE = _x o (4)

For the position error at the end point to be reduced to zero

x_ + xE = 0 (_)

or

A:x + A_: + A_: = 0 (6)

which gives

or

where I

_o = - : A: - x (7)

_G = -(A:': A z

is a 3 x 3 unit matrix.

:)X
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For any given reference trajectory the submatrices_ Ai_ are pre-
scribed functions of time and relate deviations from the reference

trajectory at present time to those of a predetermined time of arrival

at the end point. Therefore equation (7) implies guidance of the

vehicle to a fixed position at a fixed time; in other words_ the guid-

ance equation represents a "fixed time of arrival system." This method

of navigation may not be the best but the resulting guidance equation

is simple and is adequate to demonstrate that the optimal filter com-

bined with linear prediction can provide a satisfactory midcourse

navigation system.

THE DIGITAL COMPUTER SIMULATION

Description of the System

A
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The navigation system as simulated on a digital computer is illus-

trated in sketch (d). The portion to the left of the dotted line is not

_T,C_. 1
INSTRtJMEFNT_

ERROR'_-_] I

CALCULATION_ J
OF

MEASURED I '<-Yl
ANGLES I

t
ACTUAL

TRAJECTORY I

!

VEL. CORR.
eye-r =. I MEASUREMENT

--*ON BOARDGUIDANCE ....... I ERRORS

_) I CALCULATION a
_OF TRANSITION
I I MATRICES i

!
|f REFERE.CEI

, _ I TRAJECTORY I
_.] OPTIMAL ___ _:>C J CALCULATIONI
-3

FILTER _ OFVEL.,CORR.I
TRAJECTORY |

l,l ERRORS IN L'_VEL'CORR'_'J ' lMAKING j IMECHANISMj [ DECISIONVEL. CORR. LOGIC

1I VELOCITY CORR, 4
I

ELketch (d)

part of the system aboard the vehicle. The blocks labeled '_ctual

Trajectory" and "Reference TraJectoLry" are solutions of the four-body

nonlinear equations of motion in a geocentric nomrotating Cartesian

coordinate system. Provision is mde for perturbing the injection con-

ditlons of the actual trajectory i_ a random fashion from those of the

reference. The equations of motion together with brief descriptions of

the coordinate system and the trajectory computation are given in

appendix A.
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The optimal filter has been described previously. It will be re-
garded here simply as a device that gives the optimal estimate of position
and velocity and the covar_ance matrix of the errors in those estimates.

The calculation of transition matrices_ @and A_ is a mechanization
of the computations in appendix B referred to earlier. The calculation
of velocity correction is a mechanization of the guidance equation_ and
the decision logic determines whether the indicated correction is actu-
ally to be made. Such a decision process in a practical system might be
quite complex_but the logic used here simply calls for corrections at
a few predetermined times.

Whena velocity correction is applied_ it i_ assumedthat the vehicle
is oriented by meansof an attitude control system to the desired azimuth
and elevation angles. A velocity control system is then energized to
provide thrust until the desired velocity increment is achieved. These
two systems are referred to as the velocity correction mechanismin
sketch (d). In the simulation_ randomerrors in correction magnitude
and direction are generated and added to the desired velocity correction_
to form the actual correction applied.

The block labeled "Vel. Corr. MeasurementErrors" represents the
error introduced by on-board measurementof the velocity correction
(e.g., by integrating accelerometers on a stable platform). In the simu-
lation the assumederrors in this measurementsystem must be added to
the actual velocity correction to form the corrective velocity input to
the optimal filter.

Assumpticns of System Characteristics

The evaluation of the navigation system wasmadeby considering
only variations in those errors which could be readily accounted for
statistically. The assumptions concerning the nature and magnitude of
these statistical errors_ are discussed in the following paragraphs.

Optical instrumentation.- First it was assumed that the vehicle

will contain some sort of an inertial fixed reference system (e.g._ a

stable platform). For convenience of computing_ these reference axes

are taken as coinciding _th those of the geocentric Cartesian system

used for trajectory calculations. The calculated angles are the sub-

tended half angle_ 7_ of the earth or moon and the elevation and azimuth

angles_ _ and _, of the center line of the same body with respect to the

reference axis system. The equations used for calculating these angles

are given in appendix C. It _as assumed that the optical instruments

would measure the subtended angle and locate the center line of the
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planetary body either by manual observation of the disc or crescent or
by automatic disc scanning. Such devices are subject to errors due to
uncertainties in the observed surface such as atmospheric altitude
fluctuations and nonspherical shape, and these errors becomelarger with
decreasing range. The errors were assumedto be randomwith Gaussian
distribution and zero mean. In addition, it wasassumedthat the errors
in the various angles comprising one observation were independent of
each other, had the samestandard deviation, and were uncorrelated with
the errors at other observation times. Since the angular errors become
larger with decreasing range (i.e. j with increasing magnitude of the
subtended angle), the standard deviation of the errors in the observed
angles, in seconds of arc, was assumedto be of the form

where Kl is the standard deviation of error in the basic optical sys-
tem and K2 reflects the range-dependent component.

Sequence of observations.- The sequence and spacing of observations

were chosen with a view to what might be practical on such a flight.

The on-board system was assumed to be capable of measuring a total of

six angles (azimuth, elevation, and subtended angle of both earth and

moon). The maximum amount of information theoretically available in one

observation could be obtained by measuring these six angles simultane-

ously. However, the capability of sighting both bodies simultaneously

would increase the complexity of the measuring instruments and probably

complicate the vehicle design. For this reason it was decided that only

one body at a time would be observed.

It appeared, from computer results not presented here, that in the

immediate vicinity of the earth or moon it was best to observe only that

body. On the other hand, more information could be obtained during most

of the trajectory if the two bodies were observed alternately. It also

seemed reasonable that more time must elapse between observations of two

different bodies than between two sightings on the same one. For these

reasons the following basic sequence of measurements was used. In the

immediate vicinity of the moon or earth, as indicated in figure 13 only

the nearer body was observed. For the remainder of the flight 3 first

the earth was observed for 1/2 hour at 6-minute intervals (6 sets of

observations), and then, after a 1/2-hour delay, the moon was observed

for 1/2 hour. This procedure took place throughout most of the flight

except for observationless periods near the points of entry into and

exit from the moon's sphere of influence, l

A

5

5
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iThe observationless periods were necessary to allow for translation

of the origin of coordinates (see appendix A).
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This sequence resulted in a total of 844 sets of observations

for the complete trajectory.

Velocity corrections.- Six velocity corrections were made at times_

measured from injection, of 0.5, 2, 3, 3.5, 5, and 6.45 days. These

times are indicated on the reference trajectory in figure i. The final

correction was made at such a time as to allow approximately i hour of

subsequent observation before re-entry. The information thus obtained

would be useful for the te_ninal guidance system. Otherwise the number

and spacing of corrections were chosen more or less arbitrarily. The

velocity increments were applied in the middle of the half-hour delay

periods between observations. This delay would allow time for orienta-

tion of the thrust axis and then reorientation of the vehicle for

observation purposes.

Injection errors.- Injection errors in each of the Cartesian com-

ponents of position and velocity were selected from a set of random

numbers representing a Gaussian distribution.

The standard case.- The standard case was chosen as follows:

Observation and velocity correction schedules were those described

above. The values of KI and K2 in the standard deviation of errors
in the observed angles were chosen as i0 seconds of arc and 0.001,

respectively, to give

= _i00 + (0.0017) 2 seconds of arc

The rms values of errors inmaking velocity corrections were O. 5° for

each angle and 0. I m/sec in magnitude of velocity. The rms error in

measuring applied velocity corrections was taken as I cm/sec in each

component. The rms values of injection errors were I km in each

component of position and I m/sec in each component of velocity.

Calculation of Statistical Information

To conserve computer time several pertinent variables have been

calculated in a statistical sense. For example, the covariance matrix,

P, of errors in estimation discussed in reference 1 gives, in a single

computer run_ the mean square errors in estimation for a class or

"ensemble" of trajectories; that is, it approximates the results that

would be obtained from averages of all possible data runs with the

following things in common:

l. Injection conditions with a given (Gaussian) statistical

distribution arol_nd those of the reference trajectory;
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2. The same set of angles observed at the same times ;

. The same method of calculation and times of application of

velocity corrections; and

P The same statistical distribution of errors in performing the

above operations.

In addition to the covariance matrix of errors in estimation one

would also wish to know R_ the covaria_ce matrix of differences between

the actual and reference traje_tories_ Prms_ the rms error in prediction

of position at the end point_ Urms, the rms velocity correction at each

point where a velocity correction is made, and the rms deviation in

radius of periapsis at the end point. The methods used for calculating

these quantities are outlined in appendix D.

RESULTS

All the results presented here use the reference trajectory shown

in figure I. This trajectory is entirely ballistic and lies approxi-

mately in the moon's orbital plane. Injection occurs at perigee with

an altitude of 200 km at about 99.2 percent of escape velocity. The

vehicle passes ahead of the moon and reaches perilune at a lunar alti-

tude of 4766 km. The moon's gravitational attraction rotates the di-

rection of flight so that the outgoing and return portions of the tra-

jectory form the well-knovn figure-eight pattern. The vehicle's target

on return is a vacuum perigee at an altitude located so the vehicle is

traveling in approximately the same direction as the earth's rotation.

The total flight time from injection to return perigee is 6.53 days.

(This is the same reference trajectory as used in reference i. )

The trajectory considered is generally suitable for the circumlunar

mission because it has a relatively low energy, yet has a perilune not

too large for effective lunar observations. Launch will almost certainly

take place from Cape Canaveral and the reference trajectory used herein

is not necessarily attainable from that launch site. Furthermore, there

is no constraint imposed on the location of return perigee to provide

for landing at a desired site. However, it is anticipated that the use

of a different reference trajectory will not substantially alter the

efficiency or general operating characteristics of the navigation system.
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Errors Due to Linear Prediction

Before examining the operation of the navigation system it was

considered desirable to obtain an estimate of the errors due to the

linear prediction scheme used in the navigation system. Since the

linear prediction matrices involved are obtained from perturbation

equations of motion which are only approximately linear, errors at the

end point must occur which are purely the result of this approximation.

These errors can be evaluated by comparison with the solution of the

complete nonlinear equations of motion for a system in which the de-

termination of state (the position and velocity) and application of

corrective velocity can be performed exactly. Because the linear per-

turbation equations are time variant, the evaluation must be made at

several points along the trajectory. It is obvicusly impossible to con-

sider every likely situation in such an evaluation_ but a special case,

which is of interest since it facilitates a quantitative evaluation of

such errors_ is outlined below.

Examination of the guidance equation (7), xG -(A_ I A l )7 - _,

shows that nonlinearity as a result of position deviation from the

reference is the important consideration since velocity deviatioms are

canceled by the application of a perfect velocity increment. The primary

question to be answered is therefore how do the errors at the end point

increase with increasing position deviation if equation (7) is used for

computing velocity corrections?

In general,

XiE = fi(X + x, t) (s)

where X refers to components along the reference trajectory and x

refers to deviations from the reference.

Expanding equation (8) in a Taylor series g_ves

_ _fi l 6 _2fiX i = fi(X,t) + xj + xjx k +

j--1
k=l

(9)

It can be seen that linear prediction theory accounts for the

second term of equation (9). The errors in linear prediction are the

higher order terms of the expansion. It can be reasonably well assumed

that errors should be proportional to the first term neglected for small

deviations from the reference trajectory. The error in linear prediction 3

5xi E is therefore
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6

l___l _afi i X T_xiE _ bxj _xkxj xk-- _ aix

k=l

where Gi is the 6 X 6 matrix of second partial derivatives.

tioned form_

(i0)

In parti-

[Gi3 Gi4J

(ll)

If at time tI a velocity correction is made by use of equation

(7)j then immediately after the velocity correction

_(t I) = - A_ I Al_(t l) (13)

Substitution of equation (13) in equation (12) with x(tl) defined as

xo yields

xo__xo__o_o_o-_o_(__0•%_o-xo_%_ _o
_ T __ A_)T A_o (14)+Xo(A2 %A__

If the magnitudes of the three components of _(tl) = _o are chosen

equal (i.e._Ixl(tl) I = Ix2(tl)l = Ixs(tl)l = ro/_) _ then from

equations (lO) and (14)

and

5XiE _ _roe

IE _lJ2 2 w_ererE = 5x i = Kr o ,
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Thus we can conclude that to a first approximation the range error at

the end point with linear prediction is proportional to the square
of the deviation from the reference trajectory at the time of the

velocity correction.

The validity of this l_ne of reasoning was checked at four points

on each phase (outbound and return) of the reference trajectory. Equal

position deviations from the reference trajectory were made along each

of the Cartesian coordinates by use of positive and negative values of

i0, i00, and 1,000 kilometers in each component. Then for each of the

six resulting cases the velocity was corrected according to equation

(7) and the trajectories were computed to the end point by means of the

complete nonlinear equations of motion. When the ratio of the magnitude

of deviation at the end point to the square of the initial deviation

was computed, it was found to be constant within a few percent for the

two largest deviations. Disagreements in some cases with the smallest

initial deviation could be attributed to loss of significant figures in

making the velocity correction and computing the final errors. Initial

displacements of I0_000 km were also used at a range of 150,000 km from

the earth on both phases of the trajectory. The ratios of these cases

corresponded quite closely to those for i00 and 1,000 km initial

displacements.

A summary of the results of this study are shown in figure 2. The

ratio of the magnitude of the end point error (inherent in the linear

prediction scheme) to the square of the deviation at a particular range

is plotted as a function of range from the center of the earth. The

significance of these curves may be more easily understood by an example.

In figure 3, to be discussed subsequently, rms position deviations are

shown for an ensemble of trajectories. At 0.62 and 2.97 days on the

outbound flight (corresponding to 150,000 and 350,000 kilometers range

from the earth) the position deviations are 199 and 25 kilometers, re-

spectively. When these numbers are multiplied by 3 to increase the

probability that a single member of the ensemble will lie within these

deviations and when the data of figure 2 are applied directly to these

numbers (597 and 75 km), it is found that the error at perilune due to

linear prediction is 2.07 and 0.026 kilometers, respectively.

If the data shown in figure 2 and the example cited are repre-

sentative of likely cases, the following conclusions can be drawn.

First, the inherent errors in the linear prediction scheme due to

neglecting higher order terms are small for reasonable magnitudes of

the deviation from the reference trajectory. Second, errors due to non-

linearity are greatest near the centers of attraction and reach a mini-

mum at a range from the earth of about two-thirds of the earth-moon

range.
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Operation of the Navigation System

The purpose of this portion of the study was to determine whether

the performance of the navigation system was satisfactory for reasonable

magnitudes of those system errors which could be readily accounted for

statistically; that is, random errors in observations, _relocity cor-

rections, and injection conditions were considered, but systematic

errors 3 such as biases and imperfect knowledge of various astronomical

constants 3 were left for subsequent studies. It was also desired to

determine the effects of variations in the magnitudes of the various

random errors and in the number and spacing of observations.

Data for the evaluation of the navigation system were obtained with

the aid of the digital computer for the following cases:

i. The standard case referred to earlier.

. Same as case i except the errors in making and measuring

velocity corrections were zero.

1 Same as case i except the rms value of observation errors

was increased by a factor of 53 that is 3

A

5
5
9

a =_ 25OO + (0.00_7_

J Same as case I except the rms value of injection errors

was increased by a factor of 5 to 5 km and 5 m/sec.

5_ Same as case I except the sequence of observations was so

changed that one set of observations of the earth or the

moon was made alternately at 2-hour intervals for a total of

77 observations.

Comparison of statistical data with one ensemble member.- Figure 3

shows 3 for the standard case 3 the rms position and velocity deviations

between the actual and reference trajectories for an ensemble of runs.

Also shown are the corresponding quantities for a specific run 3 that is,
one member of the ensemble. Similar data were computed for all five of

the cases mentioned and in all instances the correspondence of the

individual and the ensemble data were well within what would be expected

from theoretical considerations. Note that the velocity deviations

increase rapidly near the centers of gravitational attraction (perilune

time = 3.28 days, perigee time = 6.53 days). These increases are to be

expected since the total velocity also increases rapidly. The increase

in the rms position deviation prior to perigee time is a result of the

increase in the velocity deviation. Since the gravitational center has
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a focusing effect on approach trajectories_ it is reasonable to expect

that this increase in positLon deviation occurs mainly along the path of

the vehicle. This reasoning is borne out by comparison_ to be given later_

of position deviations at the time of reference _,rigee with those in

perigee altitude.

Time histories of various statistical quantities of interest for

all the five cases are presented in figures 4 through 8. The time

histories involving trajectory estimation are given only to the time of

the final observation. Fi_e 4 shows the rms errors in estimating the

actual position and velocit_r of the vehicle at the time of that esti-

mation. The curves are an average of the estimate just after each

observation and do not depict what happens between observations.

Estimation errors.- A comparison of cases i and 2 shows the effects

of errors in measuring velocity corrections. The effect is noticeable

only during the return phase and is not significa_ there. As a result

of the fact that the difference between the two cases is caused by

errors in measurement of velocity corrections only_ it is understandable

that the effect is noticeable only when the error in estimating velocity

is quite small. As can be seen from figure 4(d) ( note the scale change

from figure 4(c))_ the error in estimating velocity achieves its mini-

mum during the return phase. A comparison of cases i and 3 shows that

increasing the errors in observation by a factor of 5 increases the

error in estimate by a similar factor during most of the trajectory.

This result should be expected in view of the fact that_ except for a

minor influence of injection errors and velocity correction measurement

errors_ the accuracy of the estimate of the trajectory is fundamentally

dependent upon the errors of the observations. The fact that injection

errors are relatively insignificant as far as errors in estimation are

concerned can be seen by comparing cases i and 4. The only noticeable

effect occurs during the first half day of the flight since after this
time a sufficient number of observations has been made so that the

knowledge of injection errors has little influence on the estimate of

the trajectory.

From a comparison of cases i_ 3_ and 5 it can be seen that the

effect of reducing the number of observations is to a large degree

equivalent to increasing the observation errors. Thus by reducing the

errors in observation_ one may make a lower number of observations and

still retain as good an estimate.

Figures 4(c) and (d) show that the error in velocity estimate in-

creases rapidly near the centers of gravitational attraction. The

primary reason for this increase is that the velocity increases rapidly

near the centers of attraction.

Prediction errors.- Fi_mre 5 shows the rms error in prediction of

the total end-point position deviations. This quantity represents the
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errors in estimation extended to the end point by linear prediction.
The prediction equation is derived in appendix D. The calculation of
this quantity was madeunder the assumption of perfect linearity; that
is, prediction errors due to nonlinearities were not considered. In
the absence of observations the prediction error remains constant. The
very sharp decrease in prediction error during the early part of the
flight is therefore a consequenceof the observations.

Onthe outbound phase the rate of change of prediction error de-
creases with time and is quite small after about 1.5 days. As a con-
sequenceof the fact that it remains constant during observationless
periods, it is likely that the rate of making observations could be
considerably decreased from this point to the moonwithout seriously
affecting perilune miss. Similarly on the return flight the observation
rate should be able to be considerably reduced during the period of
4.25 to 6.25 days without serious effect on the errors at entry.

The various parametric changeshave an effect on prediction errors
similar to that discussed previously for estimation errors.

Indicated velocity correction.- Figure 6 shows the rms indicated

velocity required to null the end point position error as a function of

time. Since the reference trajectory and estimated trajectory (as

determined by the optimal filter) are set equal to each other at in-

jection, all the cases start with zero indicated correction. If no

observations are taken, this quantity is zero throughout the flight.

Since observations cause the estimated trajectory to converge on the

actual trajectory, which in general differs from the estimate, the rms

indicated velocity required increases with each observation (starting

at injection). Prior to the first velocity correction, cases 1 and 2

obviously are identical since the observation sequences and injection

errors are identical. For both cases 3 and 5, the indicated rms value

of the first velocity correction is smaller than that in case l, although

this is not noticeable at the scale used in figure 6. This is a result

of the fact that the estimated trajectory has not departed as far from

the reference trajectory because less information is available from the

observations. Thus, it might be said that the system automatically

applies a confidence criterion, weighting the velocity corrections in

accordance with the uncertainty in the estimate.

The discontinuities in the curves occur at the time of velocity

corrections. Since the velocity corrections and the knowledge of

position and velocity are imperfect, the rms correction required in-

creases following a correction and new observations. For purposes of

clarity only case 2 is shown in figure 6(b) after the final velocity

correction. The behavior of the other curves is essentially the same

and all become infinite at the time of reference perigee.

A

5
5
9
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Deviations from the reference trajectory.- Figure 7 is a plot of

the rms position deviation between actual and reference trajectories.

The discontinuities in slope occur at the points where velocity cor-

rections are made, as can be seen by comparison with figure 6. The

divergence between cases i and 2 becomes relatively more important as

return perigee is approached. This result would be expected because of

the divergence in prediction errors and because the required velocity

corrections become small compared to the errors in making them. In this

connection it can be seen that the two cases with poor knowledge of the

actual trajectory (3 and 5) show little or no improvement as the result

of the final velocity correction. On the other hand, the standard case

and the one with large injection errors (case 4) show a marked change

and almost coincide at the final observation. A comparison of the curves

of this figure with those of figure 4 shows that the improvement is

greatest when the deviations from the reference are largest compared to

the errors in knowledge of those deviations. In other words, the indi-

cated velocity correction is proportional to the fraction of the end

point error that can be predicted accurately.

The corresponding time histories for deviations in velocity are

presented in figure 8. The step discontinuities occur at the times of

the velocity corrections and their magnitudes indicate the magnitudes of

the corrections made. Both in this figure and for the position devia-

tions in figure 7_ the case with no errors in making and measuring

velocity corrections (case 2) does not differ significantly from the

standard case until the return phase. This deviation is somewhat more

pronounced than in the case of the estimation errors (fig. 4(d)) be-

cause the errors in making the correction_ which are larger than those

in measuring it, are involved here. Even the errors in applying the

velocity correction, however, do not become significant until the errors
of estimation become small. This fact would indicate that in the

presence of an error in making the velocity correction which is inde-

pendent of the magnitude of the correction, it would be better to time

the later velocity corrections so that the magnitude of each one is

larger.

Terminal conditions.- The most critical requirement of the mid-

course guidance system is that it return the vehicle on a trajectory

from which a safe re-entry can be made followed by landing at a pre-

determined site. Some quantities which show how well this end is ac-

complished are shown in sketch (e). The distance, r, is the magnitude

of the vehicle's position deviation from the reference trajectory. The

distance, r, is the magnitude of error in estimating the vehicle's

position, while v and v are the corresponding deviations in velocity.
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POSITION AT TIME OF

///REFERENCE PERIGEE

// RACTI IRREF "\

A

5
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Sketch (e)

These quantities are essentially the same at the time of reference

perigee as t_ey wo_id be at re-entry into the earth's atmosphere. The
quantities r and v at the time of reference perigee indicate the accu-

racy of information supplied to the terminal guidance system. The

perigee of the actual trajectory can be expected to occur at a different

time than that of the reference, and although the deviation in radius

of perigee determines the possibility of making a safe re-entry_ it does

not necessarily satisfy the requirement for point landing.

The rms values of these quantities and others of interest were

calculated for the different error assumptions by linear statistical

methods and are presented in table I. In the first row are listed

results for the standard case referred to previously. Note that the

rms variation in perigee height is only 0.6 km, indicating a highly

successful survival potential for the spacecraft and its occupants.

The next two numbers, 11.5 km and Ii. 0 m/sec for the total rms range

and velocity, respectively, are given at vacuum perigee but are of the

same order of magnitude at atmosphere entry. Since the spacecraft is

re-entering at near parabolic velocity, the entry flight-path angle

variation is less than 0.001 radian and the error in range can easily

be eliminated during terminal guidance. A second set of data, those of

error in knowledge of position and velocity, are given at the time of

reference perigee as 7.7 km and 6.7 m/sec, respectively. These latter

quantities influence the terminal guidance system_ but the resultant

miss on landing was not calculated.
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A conservative estimE_,te of the total root-mean-square corrective

velocity required for the ensemble of trajectories during the 6-1/2-day

flight is obtained by adding the root-mean-square values for the

individual correction times. The total corrective velocity for the

standard case has a value of 15.3 meters per second. It is desirable to

have some estimate of the percentage of the vehicle's weight which must

be allocated to fuel for _he midcourse guidance corrections. For this

purpose the weight percentages were calculated using a specific impulse

of 300 seconds and the total rms velocity correction required. These

results are listed in the last column of table ]. Several times this

amount of fuel will be needed for confidence in the safety of the mission_

but the requirement is still quite modest.

The effects of various parametric changes from the standard are

shown in the next four rows. For example_ if one could make and measure

velocity corrections perf_ctly_ then the perigee errors are reduced but

the reduction in total corrective velocity is comparatively small.

Increasing the error_ in observations by a factor of 5 increases

all the terminal errors by a factor of 2 to 4 but velocity increases

only by about 50 percent. As might be expected, since the trajectory

determination system is quite accurate_ increasing injection errors by

a factor of 5 increases the total velocity corrc,_ion required by some-

what less than 5 but has little effect on terminal errors. A comparison

of the data in the third :_nd fifth rows shows tl_t a good measurement

system allows the liberty of taking fewer observations to achieve the

same accuracy at perigee. Even though the total number of observations

_s decreased from 84h to 77_ the terminal errors were only approximately

doubled and the increase in corrective velocity _s small.

The equivalent data for perilune are present _

metric changes other than increased injectio _

on the total corrective velocity for this

differences between r and the deviation in

as pronounced as in the case of return perigee, bu_ ...._ .......

large.

The rms position errors_ r_ are very nearly equal to the prediction

errors at the time of the final velocity correction. Delay of the final

correction would cause r to approach _ as a lower limit_ but the

rapid increase in corrective velocity required _,,_ouldmake any significant

reduction in r impractical. 0n the other hand, the amount of fuel

necessary could quite pro0ably be reduced if a larger position deviation

at periapsis could be tolerated.

The rms deviation in radius of periapsis ]_ref - Ract, particularly

at the earth_ is much smaller than the corresponding rms position devia-

tion from the reference trajectory at the time of reference periapsis.
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This fact indicates an added safety factor for emergency conditions

since the probability of a safe return to an undetermined landing site

is considerably higher than that of landing at a particular site.

Further studies are needed to determine the effects of deviations from

the reference trajectory at the time of perigee on the accuracy of at-

taining the landing site. However 3 these data indicate that the final

velocity correction should be based on the characteristics of the

terminal portion of the trajectory.

Increasing the rms value of injection errors had negligible effect

on the end point position errors. The data show, on the other hand,

that the total rms velocity correction required is almost a constant

multiple of rms injection errors.

The data in the tables show the system to be efficient and accurate.

However, it must be borne in mind that systematic errors were not con-

sidered in obtaining these results. Likewise no attempt was made to

make the number and spacing of either observations or velocity cor-

rections optimum.

Computer requirements.- An additional item of information which

may be of interest is the computer requirements. The simulation uses

13,233 words of storage and requires about 3 hours (including set-up

time) on the IBM 704. A Fortran program was written which deleted all

parts of the simulation, such as integration of the actual trajectory,

not necessary to the on-board navigation system. This revision reduced

storage requirements by about a factor of 2. Additional simplifications

can probably be made to further reduce the storage requirements. Data

on the time requirements of the simplified program are not available,

....... _Td be a substantial reduction.

_TCLUDING REMARKS

.... _-__--m_se navigation system using the optimal filter and linear

prediction performs satisfactorily in the presence of the errors assumed.

With proper scheduling the number of observations can be kept within

reason and the accuracy required of these observations should be within

the state of the art by the time the mission is attempted. In addition

the amount of fuel necessary for midcourse guidance is not excessive

and extreme accuracy in applying the velocity corrections is not required.

It is true that systematic errors such as bias and imperfect knowl-

edge of astronomical constants have not been considered in this study,

and also no attempt has been made to determine the optimum number, type,

and spacing of observations or the times of making velocity corrections.

Work is now under way to evaluate the effects of systematic errors. The
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distribution of injection errors assumed (equal in each Cartesian

coordinate) is incorrect_ however, it is not anticipated that use of

the correct distribution when available will have an appreciable effect

on the results except for the fuel requirement, which will be larger for

larger injection errors.

Ames Research Center

National Aeronautics and Space Administration

Moffett Fieldj Calif., Dec. 4, 1961



2g

APPENDIX A

NONLINEAR EQUATIONS OF MOTION FOR TRAJECTORY CALCULATIONS

l,

2.

3. The sun and moon are spherical and homogeneous.

The coordinate system is Cartesian and geocentric.

lies along the earth's polar axis, positive to the north.

The equations of motion are derived under the following assumptions:

A restricted four-body system is sufficiently accurate.

The second harmonic term of the earth's oblateness is sufficient.

The Z axis

The X and Y

axes lie in the equatorial plane with the positive X axis in the

direction of the vernal equinox. The Y axis is oriented so as to

form the right handed orthogonal system shown in sketch (f).

O VEHICLE
(X,Y,Z)

SUN
(Xs,Ys,Zs)

O MOON
(Xrn _Yrn ,Zm )

X (VERNAL EQUINOX)

EARTH

(0,0_0)

Y

Sketch (f) _-
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The equations of motion are derived by methods given in reference 3.

They are as follows:

- -_leX [i +

Re3 [

b _x m- (x-_) -
R_

_s(X-Xs) _sXs
(_)

F

- -_eY |i + J

Re 3 [
_s Zs

Rms As s Rf

(_)

..z = Re3 l+J 5

_(z-z_) _ _s(Z-Zs) _z_.
(A3)

where

Re = _/Z2 + y2 + Z2

_m--_ +_J +__

Rs = _/Xs 2 + ys2 + Zs2

'_m = _(X-Xm_ + (Y-Ym) 2 + (Z-Zm_

" -- Vr(X-Xs)_ + (_-YsF + (z-z_Fs

_e = 3"986135×i014 mS/see2

_m = 4"89820xi012 ms/sec2
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_s = 1.3253XI02° m3/sec 2

a = equatorial radius of the earth = 6. 37826>CI06

J = 1.6246XI0 -3

m

The terms involving only distances between the earth and moon or
3

earth and sun, such as _mX_Rm, arlse from the fact that the coordinate

system is not inertial. These terms account for the accelerations of

the coordinate system with respect to inertial space.

The equations of motion for the vehicle are solved by means of a

Cowell "second-sum" method. A fourth order Runge-Kutta method is used

to start the integration and to change the step size during the flight.

The positions of the sun and moon are obtained by interpolation of data

from magnetic tape ephemerides. Within the sphere of influence of the

moon, a lunar radius of 66,000 km, the origin of coordinates is trans-

lated to the center of the moon. Since no rotation is performed, the

definitions of perturbations from the reference (see appendix B) remain

the same.

J

£
J
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APPENDIX B

CALCULATION OF TRANSITION AND PRE_ICTIONMATRICES

The transition matrices used in the navigation system are obtained

by solving linear differential equations that represent perturbations

of the actual trajectory from the reference. These perturbation differ-

ential equations are derived as follows:

The nonlinear equations of motion given in appendix A can be

written in the form

= FI(X , Y, Z, t)

= F2(X, Y, Z, t) (BI)

= F3(X, Y, Z, t)

It is desired to find linear differential equations for small deviations

from the reference. These equations may be found by expanding equations

(BI) about the reference trajectory in a Taylor series and dropping all

terms except the first order.

_F I _F l _F l
5i= x -Sx+

8F3 8F3 3F3

(Be)

It is convenient to deal with systems of linear differential equa-

tions in multiple variables in matrix form. For this purpose it is

generally desirable to reduce the system to a set of first-order equa-

tions as follows.

Define

x I = 5X X 4 = 5X

x2 = 5Y x 5 = 5Y

x3 = 5Z x 6 = 57,

(B3)
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Then the system of perturbation equations can be written in matrix form
as

dx = F(t)x (B4)
dt

where F is a 6 x 6 matrix of coefficients and x is a 6 × i column

vector of the xi defined above. From equations (B2) and (B3), equation

(B4) can be written as

"v "

x 1

t

x 2

X 3

x 4

x 5

x
6

0

0

0

= _F1
X_--

_F s

x_-

0 0 i 0 O"

0 0 0 i 0

0 0 0 0 i

bF_ _F_
_ o o o

Y_- z_- o o o

_F 3 _F 3
_ o o o

xl]

x 2

x
3

x (B_)
4

X
5

X
6

A

5

5

9

Consider any system of homogeneous linear first-order differential

equations written in matrix form

dx = F(t)x (B6)
dt

where F is an n x n matrix of time variant coefficients and x is

an n X i column vector of dependent variables. It is shown in

reference 4 that if U is a nonsingular matrix having n columns of

n linearly independent solutions of (B6), then U (defined as a
I

ifundamental matrix) is a solution of

dU _ F(t)U (BT)
dt

where U(to) is a constant matrix. As a special case ¢ is defined as

being the U obtained when U(to) is the unit matrix. Thus ¢ can be

obtained one column at a time if equation (B6) is solved n times, each

with a different member of X(to) set equal to unity and all the other

members set equal to zero. Once ¢ is obtained the solution of x(t)

for any given set of initial conditions x o is given by
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x(t) = _(t)x o (]_3)

The matrix ¢(t) represents the "transition" in the states of the system

of equations between time to and t and may be written as ¢(t;to) to

indicate this fact. If equation (B5) is solved in this manner, the

resulting transition matrix relates deviations from the reference tra-

jectory at time t to the initial deviations at time t o . The tran-

sition matrix _(t2;tm) between any two times on the reference trajectory

may be calculated in the same manner as ¢(t;to).

The calculation is performed in the IBM 704 simulation by solving

six sets of perturbation equations, each with a unit initial condition

on one of the xi, between succeeding times of observations. After
each observation the initial conditions are reset, to unity or zero,

and the computation is carried out until the next observation. This

procedure was found to have certain practical advantages (discussed in

ref. I) which might also apply to the computer on board the spaceship.

The prediction matrix, A(tE;to) , from the initial time to the time

at the end point tE is precalculated and stored in the computer. The

end point state can be calculated as

x(tE) = A(tE;to)X(to) (B9)

Then if the transition matrix from time to to some intermediate time

tk is known

x(tk) = ¢(tk,to)X(to) (BI0 )

Combining (]99) and (BIO) gives

x(tE)= A(tE]to)$ (tk,to)x(tk) (BII )

So the prediction matrix relating deviations at the end time to those at
some earlier time is

A(tE;tk) = A(tE;to)¢-l(tk;to )

or, in general,

A(tE;tk) = A(tE;to) _ _-l(ti;ti_ I)
i:l

The ¢(ti;ti_ I ) are computed for use in the optimal filter and it
will be shown that they can be inverted by simply rearranging terms with

some associated sign changes. Hence, by the use of a single stored
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matrix and a few matrix operations it is possible to computethe predic-
tion matrix at each observation time. It should be noted that whenthe
transition matrices are computedwith the use of the estimated trajectory,
as was done in reference l, errors will build up in the prediction matrix
due to the differences between estimated and reference trajectory. Such
errors could be reduced if the calculated prediction matrix were replaced
with the correct one stored at a few predetermined times along the
reference trajectory.

The inversion property mentioned above is derived here.
(B8) is premultiplied by ¢-i(t)

xo = ¢-l(t)x(t)

If equation

(BI2)

It can be seen from equation (B12) that ¢-l(t) relates the set of devi-
ations at time t o which will produce unit deviations at time t. For
the navigation problem it is desired to have the matrix which relates
unit deviations at time t to the deviations at someend time tE;
that is, if ¢(t) were computedbackward in time from tE, its inverse
would be the desired prediction matrix.

Nowconsider the adjoint system of equations defined by

= (B13)
dt

This system has a fundamental matrix A obtained in the same fashion as

¢, and it is shown in reference 4 that

A(t) = ¢(t) T-l

or

¢-i(t): A (t) (Bl4)

Hence the desired prediction matrix can be found when the adjoint sys-

tem is solved backward in time and the resulting transition matrix is

transposed. (This prediction matrix could then be stored at discrete

times and velocity corrections for intermediate times could be found by

interpolation.)

Equation (B5) can be written in partitioned form as

(BIS)

A

5
5
9



33

The definitions of Xl, x2, and the submatrices of F can be seen from

comparison of equation (BI5) with (B5). Expanding (BI5) gives

xI = x2 (Bl6)

x2 - _ (roT)

or combining (BI6) and (B17) gives

X I = FX 1 ( BI8 )

(Equation (BI8) is identical with (B2) and is derived in this fashion

only to show correspondence with the adJoint system. ) From equations

(B_3)and (_5)

where the _i are defined in the same fashion as the

equation (BI9) gives

"- _ _Thl = h2

(BI9 )

x i . Expanding

(too)

h2 = -hI

or combining (]9;20) and (]32].) gives

Y2 = ZT y_ (m2)
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The matrix F, however, is symmetrica! l so that

Thus equations(BI8) and (B23) are identicalin form, while equations
(m6) and (ml) differ only in sign.

Assume that xl(to) is set equal to unity, the other initial con-

ditions being zero, and equation (BI8) is solved for xl, x2, x3,.and

their first derivatives. By letting x4 = xl, x_ = _, and x6 = x3 one A

5
5
9

4_his property of symmetry is a result of the fact that the F i of

the equations of motion (B1) are the first partial derivatives of the

gravitational potential and are continuous in the region of interest;

that is_

b*
FI _-_

where 9 is the gravitational potential.

be written as

Equation (B2) could therefore

bx 2 bY bx chx bz

bx _Y bz bY

bx bz bY bz bz2j
!

Since _X = _y, etc., F = FT
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obtains the first column of the ¢ matrix. However, in solving equa-

tion (BIB) with a unit initial condition on x I one also solves equa-

tion (B23).with a unit initial condition on _4, and by letting

hi = -_4, _ = -_5, and k3 = -h6 one obtains the fourth column in the

A matrix. Similarly, placing a positive unit initial condition on

Xl, x2, or x3 (i.e., on x4, x5, or x6) is equivaAent to putting a nega-

tive unit initial condition on hi, h2, or h 3. If this analysis is

carried through completely, it is found that if A and ¢ are written

in partitioned form as

A l A_]
A = and ¢ =

A 3 A4
0°:I

then

but from equation (BI4)

therefore

_¢31
A = _¢_ ¢i

and similarly

-A3 A?

The above analysis applies equally well to the trajectories run

backward in time and for any initial and final times. Thus it is seen

that because of the symmetrical properties of the perturbation equations,

the transition matrix relating any two points on the trajectory can be

inverted in this manner. In fact, any set of linear first-order dif-

ferential equations which can be rewritten as a set of even order (i.e.,

second, fourth, etc.) equations with a symmetrical coefficient matrix

will exhibit this property.
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APPENDIX C

CALCULATION OF MEASURED ANGLES

As was mentioned in the description of the simulated system, it is

assumed that the vehicle contains a reference system alined with the

Cartesian coordinate system described in appendix A. The geometry of

the situation is illustrated in sketch (g). The direction of the line

Z Z

A

5
5
9

27 E

VEHICLE _
(X,Y,Z_________._

X

I
I
I
I

EARTH

(0,0,0)
,Y

Sketch(g)

of sight is specified by the elevation angle O_ and the azimuth angle

Be. The subtended earth angle is 27e. The angle Be is assumed to be
measured counterclockwise from the vernal equinox (the X axis) and

O_ is taken to be positive if the vehicle is below the equatorial plane.

The equations that relate the angles Ge, Be, and 7e to vehicle

positions can be derived from sketch (g). They are:

_e = -sin'1 (_)
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Be = sin-l -Y _ cos_ l . -X
_/Xe + ye _/X2 + ym

7e = sin_ l __a
Re

where a is the equatorial radius of the earth and

Re = $_2 +y2 + z2

A similar set of equations can be derived for the case when the

moon is observed. With the notation of appendix A, these equations are:

O_n= sin-l <Zm_ Z)

_n = tan-l I_m - Y>

7m = sin-1 <_>

where am is the radius of the moon, Xm, Ym, and Zm

of the moon's position and

are the coordinates

a_-- _(x-x_) _+ (Y-Ym) _+ (z- Zm)_
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APPENDIX D

COMPUTATION OF STATISTICAL INFORMATION

It was stated in the text that statistical quantities of interest

could be computed for the entire ensemble of trajectories having certain

things in common in one run on the digital computer. From this statisti-

cal information one can determine the probabilityj or confidence factor,

of a randomly chosen member of the ensemble meeting desired conditions.

The matrix equations used to compute most of this information are de-

rived below. It can be seen from the derivations that the accuracy with

which these statistical quantities represent the entire ensemble depends

on the validity of the linear perturbation equations discussed in

appendix B.

The matrix R is defined as being the covariance matrix of devia-

tions between the actual and reference trajectories. At injection_ R

is the covariance matrix of injection errors and is assumed to be known.

By definition for any value of time

R = E(x T) (D1)

where x

If X(to)
is the deviation between actual and reference trajectories.

is known then

x(tl) = ¢(tl;to) X(to) (O2)

where ¢(t_;to) is the transition matrix between tI and to (see

appendix B). By substitution of equation (D2) into (D1)

but ¢(tl;t o)

As a result,

R(tl) = E _(tl;to)X(to)xT(to) ¢(tl;to)Tj m (o3)

is a constant matrix and may be removed from the brackets.

R(tl) = ¢(tl;tO) E_(to)xT(to__ ¢(tl;to) T

= ¢(tl;to) R(to) ¢(tl;to) T

or, in general,

R(tk) = ¢(tk;tk_ l )R(tk_1 )¢T(tk;tk_l ) (D4)
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Equation (D4) is valid provided no velocity correction is made in the

time interval under consideration. The change in R due to a velocity

correction must be found if R is to be determined over the entire

trajectory.

The covariance matrix of errors in estimating the actual trajectory_

designated P_ is identical with R before the first observation is

made. The computation of changes in P due to observations or velocity

corrections is presented in reference 1 and will not be reproduced here.

A knowledge of P is necessary for computing tl_ effects of a velocity

correction on R and for that purpose it is ass1_ed that P is known.

After a velocity correction the state vector_ Xc_ of deviations

between the actual and reference trajectories is

xc = x + xG + XQ (D5)

Here xG is a 6 x 1 column vector whose three position terms are zero

and whose velocity terms are the components of _G calculated in

equation (7). Similarly XQ is a 6 × 1 vector haying zeros in the first

three terms and the componefits of a 3 x 1 vector, _Q, of errors in making
the velocity correction for the others. This notatfon can be used to

rewrite equation (7) as

X s = -

The zeros are 3 x 3 null matrices, l is a 3 X 3 unit matrixj and _ is

the 6 x i column vector of estimated deviations from the reference.

For convenience in writing let

(D7)

After a velocity correction

R = E(XcXc T)

but

E(XcXc T) = E __x + G_ + XQ) (xT + _TGT + xQT__ (D8)
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Since xo is assumed to be uncorrelated with x or for different

times, E_xo T) = E(xxo T) = 0. With this fact together with the identity

that for any vector, y, E(yy T) =E(yTy) equation (D8) can be reduced to

E(xcxcT ) = R + E(xx_TGT+ G_xT + Gg_TG_ + S, (i_)

where

s = E(XQXQT) (DlO)

It is shown in reference 2 that when _ is defined by the expression

=x+_, E(_)=O. Thus,

E(_T) = E(_T)

S_ostituting x = x - _ into the left side of the above equation gives

ATE(_x ) = _,(x_T _)

but

E(x_T) = E(x_ T + fdc T) = E(9.,qT)

so that

E(x_ T) = E(9_ T) = R-P

where P is defined (as in ref. i) as

P = E(_<._T)

Substituting into equation (D9) and collecting terms gives

E(XcXc T) = (I + G)_(R-P) (I + G) T + P + S (Dll)

Equations (D4) and (DlO) can be used to ccmpute R for the entire

trajectory provided the covariance matrix, S, of errors in making

velocity corrections is known. The matrix S is camputed on the basis

of the assumed velocity correction system described in the text. For

simplicity it is assumed that the reference system on board the vehicle

is alined with the geocentric Cartesian coordinate system used for the

equations of motion and described in appendix A. The azimuth angle, 4,

and elevation angle, e, of the thrust axis and the magnitude, u, of the

velocity increment are measured as described in the text. It is desired

A

5
5
9
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to compute a matrix, C, which transforms the errors in mechanizing _,

@, and u into errors in the Cartesian components of velocity. The

transformation takes the form

11 12

ZQ [%ic :J32

or

The components

applied are

Xa, Ya, and za

(DI2)

of the velocity correction actually

xa = u cos e cos

Ya = u cos e sin

Za = u sin e

(DI3)

Equations (DI3) are readily derived from

sketch (h): The components of the matrix,

C, are found when the partial derivatives

of equations (DI3) with respect to e, _,

and u are taken.

The expected value of _Q_QT is

given by

E(_Q T) : E(C_'@Tc T) (Di4)

Z

_¥

Sketch (h)

The components of C are substituted into (DI4) and corrections in all

directions are assumed to be equally likely. When this assumption and the

one regarding the independence of errors in _, ?, and u are accounted for
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-v 0
mS _2

__ms%2 [_s_2÷_2)÷_u2] 0

0 0 2Vs(ae2 ) + a 2u

(DI5)

where Vms: trace of _,(x_J) computedbefore the velocity correction.
See equation (DI9). By definition

where the zero represents a

[0]
XQ = XQ

(3 M l) null matrix•

Substituting in equation (DII) gives

[o 01s = (Dz6)

o
where the zeros represent 3 × 3 null matrices•

Once the value of R is known it can be used to compute the co-

variance matrix of the indicated velocity correction, E(_G_GT). From

equation (D6) and the definition of x G

_o -- -(A__ A z)_

so that

-z ^^T -z
_,(_aT_) = (A2 a_ z)F,(xx )(a2 A_ z)T (D17)

but it was shown that

A

5
5
9

E(:TcxT) = (R-P) (DI8)
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so that

@19)

The expression for E(_G_ G ) is a 3 x 3 covariance matrix and U2rms,

its trace or sum of the diagonal terms 3 is the mean square indicated

velocity correction at the time the matrix is computed. To obtain the

mean square of the velocity which would actually be addedj one must add

to V_m s the trace of S which is the mean square error in making a

correction.

The square root of the sum of the first three terms in the diagonal

of the P matrix gives the root-mean-square error, rrms, in estimating

position, while the last tlmee give the corresponding quantity, 9rms,

for velocity. The root-mean-square deviations, rrm s in position, and

Vrm s in velocity, are obtained from R by the same procedure. The
remaining quantity presented in time history form is the rms position

prediction error. If XEp is the 3 x i column vector of errors in

predicting end point position, the covariance matrix of prediction

errors is E(xEpx_p).

From equation (2) it is seen that

xsp =

so that

but

E(_o_ T ) = p

therefore

E(xEpXTp) = (A 1 Aa)P(A 1 A )T (D22 )

The root-mean-square error, Prms, in predicting position is the square

root of the trace of the ] × 3 matrix in (D22).



44

The computation of the rms deviation in radius of perigee and

perilune given in table I is carried out at the time of reference peri-

apsis. The radius of periapsis of the actual trajectory is

Rp = _ (X,Y,Z,X,Y,Z) (D23)

The gradient, VRp, is a 6 × i column vector of the partial derivatives.
The total differential may be written as

where dx is the column vector of differentials of the Cartesian posi-

tions and velocities. If r_ is defined as the vector difference

between the actual and reference periapsis vectors, it can be written
as

rp = (V2p) Tx (D25)

The x here is the column vector of deviations between the actual and

reference trajectories, and equation (D25) depends for its validity on

the magnitude of x being relatively small. The variance of rp is

E(rpr T) = E(VRp)T(xxT)(URp)

which reduces to

E(rprp T ) = (V_)TR(VRp )
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